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Abstract

Men are consistently overrepresented in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection, and coronavirus disease 2019 (COVID-19) severe outcomes, including higher fatality
rates. These differences are likely due to gender-specific behaviors, genetic and hormonal factors, and
sex differences in biological pathways related to SARS-CoV-2 infection. Several social, behavioral, and
comorbid factors are implicated in the generally worse outcomes in men compared with women.
Underlying biological sex differences and their effects on COVID-19 outcomes, however, have
received less attention. The present review summarizes the available literature regarding proposed
molecular and cellular markers of COVID-19 infection, their associations with health outcomes, and
any reported modification by sex. Biological sex differences characterized by such biomarkers exist
within healthy populations and also differ with age- and sex-specific conditions, such as pregnancy
and menopause. In the context of COVID-19, descriptive biomarker levels are often reported by sex,
but data pertaining to the effect of patient sex on the relationship between biomarkers and COVID-19
disease severity/outcomes are scarce. Such biomarkers may offer plausible explanations for the worse
COVID-19 outcomes seen in men. There is the need for larger studies with sex-specific reporting and
robust analyses to elucidate how sex modifies cellular and molecular pathways associated with SARS-
CoV-2. This will improve interpretation of biomarkers and clinical management of COVID-19 patients
by facilitating a personalized medical approach to risk stratification, prevention, and treatment.
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R eporting of disaggregated data by sex
is uncommonly performed in the
available literature, and current data

relating to coronavirus disease 2019
(COVID-19) and attendant outcomes are
no exception.1 The Global Health 50/50
have collated international data from coun-
tries that provide sex-specific information
and report a male-to-female case fatality ratio
ranging from 1.6 to 2.8.2 National data from
China, Korea, and Europe report similar case
fatality ratios and also a possible interaction
with age.3,4 Results from observational
studies have been consistent, with males
and older persons tending to be overrepre-
sented among patients with severe dis-
ease,5-7 intensive care unit admissions,5,8-10

and death from the infection.3,7,11-15 Studies
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stratified by sex have also identified male sex
as a risk factor for worse outcomes and
increased mortality.16-19 Large, robust sex-
stratified analyses, however, are limited due
to the nature of studying an emerging
disease.

The sex disparity of COVID-19erelated
morbidity and mortality is likely explained
by a combination of biological sex differ-
ences (differences in chromosomes, repro-
ductive organs, and related sex steroids)
and gender-specific factors (differential be-
haviors and activities by social and cul-
tural/traditional roles).4 Men are more
likely to engage in poor health behaviors
such as smoking and alcohol consump-
tion,20,21 and have higher age-adjusted rates
of pre-existing co-morbidities associated
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ARTICLE HIGHLIGHTS

d Most biomarkers associated with severe Covid-19 disease differ
by sex when examined in experimental and epidemiological
studies in the non-COVID-19 population.

d Sex specific genetic and hormonal modulation of the immune
and renin angiotensin aldosterone system are complex, but
important COVID-19 disease mechanisms which may provide
insight into the observed sex disparity in case fatality rates.

d Future studies should address the relationship between bio-
markers and COVID-19 disease severity including mortality, as
current data are scarce.
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with poor COVID-19 prognosis, including
hypertension, cardiovascular disease (CVD),
and chronic obstructive pulmonary disease
(COPD).7,9,13,18,22-24 Furthermore, a stratified
analysis by sex showed that even after adjust-
ment for age, the effect of co-morbidities on
COVID-19 mortality was greater for men
than women.16
FIGURE. Cellular receptors of angiotensin II and severe
CoV-2) viral entry. Angiotensin-converting enzyme 2
angiotensin II (Ang II), generating Ang 1-7 which activ
diovascular protective effects, thus attenuating the effec
transmembrane serine protease 2 (not shown in figure
facilitating endosomal entry. AT1R ¼ angiotensin type
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Various biological pathways may
contribute to the differing responses to the
severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) virus by sex. The size
and independence of the effect of sex on
the association between biomarkers and
COVID-19 health outcomes, however, rarely
have been rarely reported or translated into
preventive and clinical care settings. This re-
view synthesizes the available evidence
regarding the proposed cellular and molecu-
lar markers of COVID-19 severity by sex,
including biomarkers of inflammation; coag-
ulation; liver, renal, and cardiac function;
and expressions of angiotensin-converting
enzyme 2 (ACE2) and transmembrane serine
protease 2 (TMPRSS2). The available
literature on such markers in the general
population will also be discussed. The litera-
ture regarding biomarkers and COVID-19
available on PubMed, Embase, and the Chi-
nese National Knowledge Infrastructure
published until June 7, 2020, was systemati-
cally searched and reviewed. Our review
synthesizes the current data and identifies
acute respiratory syndrome coronavirus 2 (SARS-
(ACE2) removes C-terminal amino acids from

ates MAS receptors. Ang 1-7 has a range of car-
t of Ang II. SARS-CoV-2 spike protein is primed by
) and interacts with the cell surface ACE2 receptor
1 receptor; AT2R ¼ angiotensin type 2 receptor.
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the gaps in knowledge regarding the sex dif-
ferences in COVID-19, which should be
addressed in current and future studies to
personalize evolving screening, preventive,
and treatment strategies.

RENIN-ANGIOTENSIN-ALDOSTERONE SYS-
TEM AND SARS-COV-2 VIRAL CELL ENTRY
The pathogenesis of SARS-CoV2 disease in-
volves tissues which express high levels of the
ACE2 receptor. The infection typically starts
in the oropharynx or nasopharynx, and then
spreads to tissues that express ACE2: involve-
ment of the upper airway and lungs occurs,
the latter potentially leading to pneumonitis.
Angiotensin-converting enzyme2 is a keynega-
tive regulator of the renineangiotensine
aldosterone system (RAAS) and counterbal-
ances the actions of angiotensin-converting en-
zymes (ACEs) (Figure). The ACE converts
angiotensin I (Ang I) to angiotensin II (Ang
II), which binds to the angiotensin type 1 recep-
tor (AT1R). This induces many deleterious
effects, including vasoconstriction, fluid reten-
tion, enhanced cellular growth and migration,
and oxidative stress promoting fibrosis
and inflammation.25 Angiotensin-converting
enzyme and ACE2 share substantive sequence
identity, but ACE2 shows substrate specificity
and functions exclusively as a monocarboxy-
peptidase. It removes single C-terminal amino
acids from Ang II, generating Ang 1-7 which
binds and activates the G-proteinecoupled
Mas receptor. Angiotensin 1-7 attenuates the
harmful effects of Ang II by eliciting a range of
effects on the cardiovascular system, including
vasodilatation; myocardial protection; and ef-
fects that are anti-arrhythmic, anti-hyperten-
sive, anti-inflammatory, anti-thrombotic, and
inotropic in nature. Angiotensin 1-7 also in-
hibits pathologic cardiac remodeling and insu-
lin resistance.26,27

The SARS-CoV-2 spike protein interacts
with the human cell surface ACE2 receptor,
whereas TMPRSS2 primes the spike protein
and may cleave the S1/S2 and S2’ sites to
assist attachment and membrane fusion.28,29

Viral invasion increases activity of A disinte-
grin and metalloproteinase 17, which medi-
ates the release of pro-inflammatory
cytokines and ectodomain shedding of
Mayo Clin Proc. n October 2020;95(10):2189-2203 n https://doi.org
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ACE2, reducing ACE2 cell surface expres-
sion.27 The protective regulatory effect of
the ACE2/Ang 1-7 axis against the RAAS is
therefore lost.

ACE2 AND TMPRSS2: SEX DIFFERENCES IN
EXPRESSION AND REGULATION
Increasing evidence supporting the roles of
ACE2 andTMPRSS2 inviral entry and invasion
of cells has led to numerous animal and human
studies aiming to elucidate the relationship be-
tween their expressions/functions and risk for
SARS-CoV-2 infection andCOVID-19 severity.
In addition, given previously known male/
female differences in RAAS,30 possible sex
differences in ACE2 and TMPRSS2 have
been postulated, but data are limited. It is
likely that chromosomal/genetic differences,
together with differential regulation of ACE2
and TMPRSS2 by sex hormones, which is life-
cycle dependent, may be relevant consider-
ations. Notably, the ACE2 gene lies on the X
chromosomeand escapesX-chromosome inac-
tivation; however, sex-specific expression is
inconsistent acrossmultiple different tissues.31

The receptor is predominantly expressed in the
lung, heart, vascular endothelium, kidney,
testis, and gastrointestinal tract and is also
shed into circulating plasma.27

Estrogen through estrogen-receptor
signaling on myocardium may decrease the
ratio of ACE to ACE2 expression and upre-
gulate Mas and angiotensin type 2 receptor
(AT2R) expression levels,32 which, unlike
the effect of AT1R activation as described
above, reduces inflammation and tissue
fibrosis and promotes tissue repair.33 How-
ever, a subsequent study showed no signifi-
cant difference in ACE2 expression values
in left ventricular tissue between males and
females.34 Preliminary results of an inte-
grated bio-informatics analysis of single-cell
RNA sequencing data indicate that the
expression of androgen receptors positively
correlates with ACE2 and that men may
have increased pulmonary alveolar type II
cells expressing ACE2 compared with
women.35 Other studies, in contrast, report
no significant difference in lung tissue gene
expression between males and females, or
with differences in age.34,36,37 Smoking
/10.1016/j.mayocp.2020.07.024 2191
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status, however, appears to correlate with
ACE2 gene expression thus implicating dif-
ferences in gender-specific behaviors. Cur-
rent smokers as compared with never
smokers have significantly upregulated
ACE2 expression in the lung and oral epithe-
lium.37-39 COPD also has been indepen-
dently associated with increased ACE2
expression by approximately 50% compared
with those without COPD.38 Given that
smoking and COPD are more prevalent
among males, higher expression of ACE2
due to these risk factors may, in part, explain
the worse outcomes of COVID-19 in males.
In summary, although studies have reported
inconsistent sex differences related to ACE2
expression, it seems that, in general, ACE2
expression is increased in men and
decreased in women. These effects may be
modified/potentiated by gender-specific fac-
tors/behaviors, and should be investigated
in future studies dedicated to sex differences.

Observed sex-related differences in the
severity of COVID-19 may also be mediated
via TMPRSS2 gene expression and activity.
The expression of TMPRSS2 on nonesex-
specific tissues does not appear to signifi-
cantly differ between males and females.34

However, the only known stimulus of
TMPRSS2 gene transcription is androgens40

and, interestingly, patients with COVID-19
who required hospital admission exhibit
androgenic alopecia.41 TMPRSS2 is a recog-
nized protease associated with prostate can-
cer, and males with prostate cancer on
androgen deprivation therapy may be at a
significantly lower risk of SARS-CoV-2 infec-
tion compared with male patients who are
not.42 In addition, one haplotype that upre-
gulates TMPRSS2 expression did so in
response to androgens, whereas another is
associated with increased risk of severe influ-
enza, the latter also disproportionately
affecting males.43,44 The risk of severe infec-
tion mediated by androgen levels may, in
part, explain why preadolescents are usually
not severely affected by infection with SARS-
CoV-2. However, studies directly comparing
the expression of TMPRSS2 by sex and
COVID-19 outcomes have not yet been con-
ducted. Future investigation of ACE2 and
Mayo Clin Proc. n October 2020;9
TMPRSS2 expressions in various tissues
and further stratification by sex with respect
to disease severity is required.
IMMUNOLOGICAL AND INFLAMMATORY
BIOMARKERS
Morbidity and mortality associated with
COVID-19 is mediated through intense viral
stimulated inflammation and increasing
levels of inflammatory biomarkers and cyto-
kines, commonly referred to as “cytokine
storm.” Together with reduced lymphocyte
counts, cytokine storm is consistently associ-
ated with more severe COVID-19 disease.
Among those exhibiting an excessive inflam-
matory profile, older and male patients are
overrepresented.7,45,46

An early elevation in C-reactive protein
(CRP) greater than 15mg/L provides amarker
of disease severity46 and levels greater than
200 mg/L on admission are independently
associated with five times the odds of death.7

Males with severe COVID-19 reportedly
have a higher CRP concentration compared
with females, independent of age and co-mor-
bidities.19 Of the numerous interleukins
(IL)eassociated with COVID-19 severity,
including IL-6, IL-2, IL-8, IL-10,45-47 and
compared with females, young and old males
with COVID-19 exhibit significantly higher
IL-2 and tumor necrosis factor alpha (TNF-
alpha), respectively, independent of co-mor-
bidities.19 Moreover, data indicate that males
with COVID-19 display greater upregulation
of pro-inflammatory cytokines, including
CCL14, CCL23, IL-7, IL-16, and IL-18, the
latter possibly contributing to their higher
susceptibility to developing cytokine storm
and subsequent poorer COVID-19 out-
comes.35 Although IL-10, a cytokine with
anti-inflammatory effects, has been shown to
be higher among older males, a positive IL-
10 feedback could be considered an attempt
to decrease excessive inflammation and
consequent tissue damage. Further, higher
IL-10 expression diminishes the activity of
antiviral T-cells.48,49 Whether biological sex
differences modify the associations among
CRP and ILs and COVID-19 outcomes has
yet to be examined.
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Adaptive Immune Response
Lymphocytes are among the first responders
to viral agents, including SARS-CoV-2, and
are associated with COVID-19 severity.50

Although mild COVID-19 disease can be
associated with either increased or decreased
lymphocyte counts,51 in severe disease, lym-
phocytes are consistently decreased.
Although some COVID-19 studies have sug-
gested that male sex is inversely associated
with lymphocyte count,17,19 a meta-analysis
of the mean difference in admission lympho-
cyte counts between patients with and
without severe COVID-19 outcomes showed
that lymphopenia and disease severity were
not modified by sex or co-morbidities.52

A single-center Wuhan study showed that
in ill patients, concentrations of SARS-CoV-2
immunoglobulin G were significantly higher
in females comparedwithmales, and remained
so until 4 weeks from hospital admission.53

Sex-specific adaptive immune response is
generally well recognized, with women
mounting higher antibody production54 and
more efficacious vaccine responses.54 Healthy
females are known to have higher numbers of
CD4þ T cells, greater CD4þ: CD8þ ratios,
and increased numbers of activated T cells,
cytotoxic T cells, and B cells compared with
males,54-57 resulting in a prompt response to
the presence of infectious agents. The role of
sex steroids in the differential immune re-
sponses is supported by a study indicating
testosterone exerts an immunosuppressant ef-
fect, whereas estrogen may be either immune
enhancing58 or immunosuppressive.59

Innate Immune System
Total white cell count was less consistently
elevated among COVID-19 patients who
required intensive care unit admission or
died compared with patients who did
not.12,46,51,60 These studies did not investi-
gate the effect of sex on this relationship, a
question that merits attention as there are
sex-specific differences in blood leukocyte
composition within the general population.
In the latter population, males have higher
baseline numbers of total leukocytes, mono-
cytes, neutrophils, eosinophils, and baso-
phils compared with females. The total
Mayo Clin Proc. n October 2020;95(10):2189-2203 n https://doi.org
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leukocyte and neutrophil counts increase
progressively until the age of 55 years in
males. Women have a bimodal distribution
in total leukocyte counts, with the lowest
counts occurring around menopause.61,62

These known sex differences, together with
the presence of underlying co-morbidities
and concurrent infections, likely contribute
to the inconsistent findings regarding white
blood cell counts reported in current
COVID-19 studies.

The neutrophil to lymphocyte ratio (NLR)
is a well-known marker of inflammation and
appears to reflect the severity of COVID-19,
particularly among patients older than 50
years of age.51,63 A single-center retrospective
analysis observed thatmoremales had anNLR
above 11.75, which was associated with a
lower survival rate.64 The NLR exhibits
distinct sexual dimorphism in the general
population. Females 50 age years or younger
have a higher NLR compared with males of
the same age and compared with older fe-
males. The NLR is higher for males than fe-
males older than the age of 50 years.61 The
effects of sex and age on the prognostic value
of NLR require further investigation.

Sex differences may have important im-
plications in the efficacy of therapeutics
that target particular viral signaling path-
ways. Notably, toll-like receptors (TLRs),
which upregulate type 1 interferon (IFN),
an important protective mechanism against
viral infections,65 may be up to 10-fold
higher in females compared with males.66-
69 Furthermore, a recent study reported
that after TLR7 stimulation, IFN levels
were lower in men compared with women.
Toll-like receptor 7emediated IFN expres-
sion may be decreased in men due to the
known negative effects of testosterone on
IFN expression.68 IFN therapy is under
active investigation for COVID-19 patients,
so additional research addressing sex differ-
ences in the IFN pathway may result in a tar-
geted, sex-dependent therapeutic approach.

In addition to deriving benefit from the
specific effects of estrogen, females may have
stronger immune responses due to the
intrinsic differences in the expression of genes
on the sex chromosomes. Notably, several
/10.1016/j.mayocp.2020.07.024 2193
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genes which contain high numbers of
immune-related alleles responsible for innate
and adaptive immune responses to infection
are located on the X chromosome.70 Although
X-chromosome inactivation is a mechanism of
equalizing gene expression in females and
males, some genes such as TLR771 may escape
silencing, thereby conferring on females an im-
mune advantage over males.70
SEX-SPECIFIC CONDITIONS AND COVID-19

Reproduction
One physiologic state that is associated with
upregulation and increase in ACE2 is
normal gestation, which raises the possibil-
ity that pregnant women may be at a greater
risk for SARS-CoV-2 infection. We have
recently reviewed the topic of pregnancy,
its complications, and COVID-19.72 Briefly,
the upregulation of ACE2 and consequent
conversion of Ang II to Ang 1-7 promote a
general state of vasodilation with anti-
thrombotic and anti-inflammatory activities
in uncomplicated pregnancies. Pre-
eclampsia is a pregnancy-specific, multi-
system condition caused by abnormal
placental vascular remodeling and systemic
endothelial dysfunction which affects 3.3%
of pregnancies,73 and is characterized by
decreased maternal plasma Ang 1-7 levels.
SARS-CoV-2 directly binds and downregu-
lates ACE2 expression; accordingly, ACE2
protein expression is expected to decrease
during such infection. In pregnancy, this
may potentiate these RAAS abnormalities
because increased Ang II levels, relative to
decreased Ang 1-7 levels, occur in pre-
eclampsia (Figure).72 Because of the over-
lapping mechanisms, certain clinical fea-
tures and lab abnormalities, including
thrombocytopenia74 and liver function
derangement,75 may be seen in both pre-
eclampsia and COVID-19, making the
distinction between COVID-19 plus pre-
eclampsia versus COVID-19 only compli-
cated.76 Consequently, pregnant women
with COVID-19 must be evaluated criti-
cally, with particular consideration as to
whether pre-eclampsia concomitantly exists
or is incipient.
Mayo Clin Proc. n October 2020;9
Sex Hormones, Menopause, and Hormone
Replacement Therapy
Sex differences that are constant throughout
the life cycle are likely chromosomal/genetic
in origin, whereas those that occur with pu-
berty and then fade with aging are suggestive
of hormonal effects. Sex steroids, including
testosterone, estrogen, and progesterone are
potent regulators of immune and inflamma-
tory responses due to the presence of sex-
hormone responsive sequences in the
respective genes. Estrogen during pre-
menopause has anti-inflammatory effects,
attended by lower levels of IL-6, IL-8, and
TNF-alpha.77 Conversely, the physiologic
decline of estrogen levels during natural
menopause results in increased levels of IL-
6, IL-8, and TNF-alpha.59 Estrogen depletion
or oophorectomy in mice infected with
SARS-CoV led to a worse prognosis
compared with normal estrogen producing
mice.78 Clinical studies show that inflamma-
tion resolves more rapidly in women as
compared with men, and these differences
are thought to be due to hormonal effects
on neutrophil apoptosis and bone marrow
production.79,80 Taken together, available
studies provide strong evidence that estro-
gen exerts significant anti-inflammatory
responses, thus suggesting a potential thera-
peutic role of hormone replacement therapy
in older women. Similarly, low levels of
testosterone in elderly men have been associ-
ated with upregulation of inflammatory
markers and possible increased risk of lung
damage, as well as respiratory muscle catab-
olism and increased need for assisted ventila-
tion.81 As advanced age remains one of the
most important risks for poor COVID-19
outcomes, future research should address
the role of hormone replacement therapy in
elderly women and men who are diagnosed
with COVID-19.
MARKERS OF CALCIUM HOMEOSTASIS AND
COVID-19

Procalcitonin
Procalcitonin (PCT) is the precursor of calci-
tonin, a hormone that regulates calcium and
phosphorus homeostasis by opposing the
5(10):2189-2203 n https://doi.org/10.1016/j.mayocp.2020.07.024
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action of parathyroid hormone. Procalcito-
nin levels are higher in severe cases of
COVID-19.7,82-84 Several meta-analyses
showed that the risk of severe infection
may be five-fold higher in patients with
elevated levels of PCT.83-85 Serum PCT
levels are low in healthy persons and an
elevated PCT level of greater than or equal
to 0.5 ng/mL is typically considered a sign
of bacterial but not viral infection.86,87

Although no difference in PCT levels by
sex occurs in healthy individuals,88 one
study of PCT levels in 14 patients with crit-
ical COVID-19 infection described that more
males had a PCT level greater than or equal
to 0.5 ng/mL compared with females.17

Given this association with outcomes in
COVID-19, ongoing studies should investi-
gate the role of PCT as a sex-specific prog-
nostic marker of disease severity.

Vitamin D
Apart from its role in calcium homeostasis
through improving calcium reabsorption
from the gut, vitamin D modulates inflam-
matory pathways associated with viral infec-
tions.89 Meta-analyses indicate that vitamin
D deficiency increases the risk of acute viral
respiratory infection and community-
acquired pneumonia, and that supplementa-
tion may prevent upper respiratory tract in-
fections.90 Vitamin D was found to
decrease with age, and the strongest protec-
tive effect of supplementation was observed
in those with the lowest 25-hydroxyvitamin
D [25(OH)D] levels at baseline.91,92

Whether sex modified the effect of supple-
mentation on upper respiratory tract infec-
tion risk was not examined.92,93 American
men are uncommonly evaluated for this defi-
ciency and often do not receive adequate
supplementation, especially those who are
older or obese.94

Ecological studies suggest a positive cor-
relation between countries with low mean
concentrations of 25(OH)D and higher
COVID-19 infection and mortality rates.95,96

A Swiss cohort study of 109 patients re-
ported that 25(OH)D levels were signifi-
cantly lower in patients with SARS-CoV-2
compared with those who were uninfected,
Mayo Clin Proc. n October 2020;95(10):2189-2203 n https://doi.org
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although the association did not significantly
differ when stratified by sex and age older
than 70 years.97 A larger analysis of
348,598 UK Biobank participants confirmed
that despite a univariate association between
25(OH)D levels and the odds of COVID-19,
following multivariable adjustment, the as-
sociation was no longer significant. Modifi-
cation by age or sex was not investigated.98

It is plausible that lower vitamin D levels
may contribute to worse disease observed
in older men compared with younger or fe-
male individuals,90,93 but there is insufficient
epidemiologic evidence in support of this
thesis. Given the relatively minimal risks of
vitamin D supplementation, some experts
have recommended vitamin D supplementa-
tion as a COVID-19 preventive strategy,
especially in at risk elderly populations.91
ORGAN-SPECIFIC BIOMARKERS

Cardiac Biomarkers
Patients with COVID-19 may suffer direct
cardiac damage or damage from associated
systemic inflammation, hemodynamic insta-
bility, and multiple organ failure.99-101 Car-
diac biomarkers are routinely reported
among hospital cohorts, and meta-analyses
and subsequent studies have shown that
mean levels of troponin,7,101-105 N-terminal
pro-B-type natriuretic peptide (NT-proBNP),
and creatine kinase myocardial
band101,103,105 were all significantly higher
in patients with more severe COVID-19.
Furthermore, elevated troponin levels diag-
nostic of acute cardiac injury were associated
with severe disease and at least a four-fold
higher mortality.102,103 These patients
tended to be older, male, and have a history
of CVD.101,103 The most recent meta-
analysis, however, reported that the standard
mean difference of troponin and BNP levels
between severe and less severe COVID-19
infections was modified by hypertension,
but not by age, sex or other co-morbid-
ities.103 Subsequent studies of NT-proBNP,
high sensitivity (hs)-troponin levels and
COVID-19 outcomes also observed no
association with sex.17,106,107 Among healthy
individuals, baseline levels of cardiac
/10.1016/j.mayocp.2020.07.024 2195
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biomarkers significantly differ by sex. For
example, in females compared with age-
matched males, hs-troponin and creatine
kinase myocardial band levels are lower,
whereas NT-proBNP levels are higher.108,109

However, in an acute setting, sex-specific
hs-troponin and NT-proBNP thresholds do
not improve their predictive value of
myocardial infarction or death.109-111

Despite women having higher baseline
NT-proBNP, in the setting of acute heart fail-
ure the absence of an NT-proBNP sex differ-
ence is likely because women more
commonly have preserved ejection fraction
and less of an increase in NT-proBNP levels
compared with men who are more likely to
develop low ejection fraction heart failure
and greater elevations in NT-proBNP
levels.106,111 In addition, NT-proBNP levels
are thought to be inversely related to
androgen levels. Thus, the baseline sex dif-
ference is less pronounced as women and
men age because estrogen levels decline in
women and androgen levels decrease in
men.112 Similar to non-COVID patients,
sex was not shown to modify the association
between cardiac biomarker levels and patient
outcomes among COVID-19 patients in the
acute hospital setting.103

Liver Function
SARS-CoV-2 causes liver damage through var-
ied mechanisms, from direct cellular toxicity
to the effects of immune-related inflammation;
concomitant drug toxicity may contribute to
liver damage in patients with COVID-19.75

Several studies reported increased levels of
alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) of between 14% and
53% in COVID-19eaffected patients. Signifi-
cantly higher plasma levels associate with
more severe infection and, in some studies,
with mortality.10,12,16,75,113-115 One study of
168 patients critically ill with COVID-19 re-
ported significantly higher levels of ALT and
AST inmales compared with females.17 Serum
transaminase concentrations are generally
lower in females compared with males,116-119

in part due to differences in fat tomuscle ratio,
lipid metabolism, and hormonal effects on
liver cells.119 Premenopausal women are at
Mayo Clin Proc. n October 2020;9
lower risk of development of liver inflamma-
tion, nonalcoholic steatohepatitis, and the
resulting increase in cardiovascular risk.120

Furthermore, elevated ALTmay be a predictor
of coronary artery disease in males only.121

With limited reporting on sex differences in
liver markers, it is difficult to identify an effect
of sex on the prognostic potential of transami-
nases in COVID-19 patients.

Renal Function
Renal injury occurs in COVID-19. A large pro-
spective cohort study of 701 patients in
Wuhan, China, noted that acute kidney injury
(AKI) occurred in 5% of patients.122 This is a
lower percentage than is usually observed in
other critical illnesses, and renal autopsies per-
formed on COVID-19 patients with AKI
showed evidence of renal histologic injury,
with varying degrees of acute tubular necro-
sis.123 Biomarkers of renal impairment,
including an increase in creatinine, blood
urea nitrogen, and presence of AKI have been
reported in most studies.16,113,122,124,125

Greater elevations in these renal biomarkers,
along with proteinuria, and hematuria, occur
in critically ill patients compared with patients
with mild or moderate infection.7,123 Further-
more, independent of age and sex, a higher
baseline creatinine, underlying proteinuria,
and hematuria were associated with a higher
risk of mortality.12,46,123,124 In patients with
severe disease, creatinine and blood urea nitro-
gen levels were consistently higher in men
compared with women,17 and older males
were more likely to have a higher baseline
creatinine and develop AKI,17,124 although
studies have not investigated the effect of sex
on renal biomarkers and COVID-19 severity.

Serum creatinine levels are affected by
many factors including, age, sex, and mus-
cle mass. The literature regarding suscepti-
bility to AKI based on sex is controversial.
A woman’s hormonal environment, howev-
er, is thought to have a protective effect
against the development of AKI,126,127 and
females have been previously shown to be
at lower risk of AKI compared with
males.126 Similarly, smaller studies of renal
transplantation patients have suggested that
male sex may be a risk factor for AKI in
5(10):2189-2203 n https://doi.org/10.1016/j.mayocp.2020.07.024
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TABLE. Coagulation Biomarkers, Sex, and Age Differencesa

Coagulation biomarker
Sex with higher
biomarker levelb Advancing age

Primary hemostasis
Platelet count Female150 Decrease150

Estrogen receptor associated
platelet protein expression

Equal151

VSM estrogen receptor beta: alpha ratio Female152,c

NO mediated vasodilation Female153-155

Platelet adherence þ spreading
response to vascular injury

Male156

Platelet aggregation Equal156

Secondary hemostasis

Factor VII Female157 Increase157

Factor VIII Female157,158,d Increase157,158

Factor IX Equal157 Increase157

vWF Female158,d Increase158

Fibrinogen Female157,d,e Increase157

PT Equal159

aPTT Equal159

Fibrinolysis

Clot lysability Equal160

Plasminogen activator inhibitor-1 antigen Male161 Increase161,f

Tissue plasminogen activator antigen Male161 Increase161,f

Protein C/S levels Varies by age157 Increase157,g

D-dimer Female162 Increase163,164

General

VTE Male165,h

VTE recurrence Male166

Ischemic stroke incidence Male167,i

Hemodynamically significant coronary
stenosis at first MI in age <45 years

Male168

aaPTT ¼ activated partial thromboplastin time; MI ¼ myocardial infarction; NO ¼ nitric oxide; PT ¼ prothrombin time; VSM ¼ vascular
smooth muscle; VTE ¼ venous thromboembolism; vWF ¼ von Willebrand factor.
bIt is assumed that pre-menopausal females have significantly higher estrogen levels than males.
cFemale levels decreased post-menopause.169
dAlterations seen in women on hormone replacement therapy/ pregnancy / menstrual cycle.
eAlterations seen with testosterone levels.170
fLevels are non-significantly higher in men than age-matched post-menopausal women.
gFemale levels increased post-menopause more consistently than in men.157
hExcluding women on hormone replacement therapy, pregnant, or during the puerperium.
iWithin the 46- to 64-year-old age group. Changes depending on race in the 65- to 74-year-old age group. No difference after 75 years.

COVID-19 AND SEX DIFFERENCES
COVID-19.128-131 These data set the stage
for future studies that should be adequately
powered, and likely multicenter, to address
how the interplay between sex and COVID-
19 may affect the incidence of kidney
dysfunction, both in native and trans-
planted kidneys.

COAGULATION BIOMARKERS
Thrombotic diatheses are commonly
observed in persons with severe COVID-
Mayo Clin Proc. n October 2020;95(10):2189-2203 n https://doi.org
www.mayoclinicproceedings.org
19.132,133 COVID-19 patients with throm-
botic complications generally follow a course
of disease that is more aggressive. In one
study, 71% of patients who died of
COVID-19 fulfilled the International Society
of Thrombosis and Hemostasis criteria for
disseminated intravascular coagulopathy
compared with just 0.6% of survivors.134

Moreover, evidence consistently shows the
negative prognostic value of individual coag-
ulation parameters, including elevated D-
/10.1016/j.mayocp.2020.07.024 2197
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dimer12,46,85,135,136 and reduced platelet
counts,45,46,74,135-138 both of which were sig-
nificant after adjustment for multiple
confounders.139

In studies of COVID-19 patients with
coagulation dysfunction, the composition of
the patient population more commonly in-
cludes male patients, and possibly reflects
the more severe disease that occurs in
males.12,85,138 The underlying mechanism of
coagulopathy in COVID-19 patients has yet
to be elucidated, but it is hypothesized that
a disproportionate inflammatory response re-
sults in endothelial cell dysfunction and a
pro-thrombotic state.140 Because of ACE2 re-
ceptor expression on endothelial cells, the
COVID-19 virus may cause endotheliitis,
which could result in not only arterial and
venous inflammation, but also microcircula-
tory and lymphocytic endotheliitis; the con-
sequences of such endotheliitis include
widespread organ involvement, sudden vaso-
constriction, abnormal angiogenesis, micro-
thrombi formation, and ischemia.140-142

Moreover, patients with severe COVID-19
develop a hypercoagulable state,143 further
demonstrated by increased levels of factor
VIII and von Willebrand factor, marginally
decreased anti-thrombin III activity,144 and
inactivation of the fibrinolytic system.145

These derangements likely underlie venous
thromboses; arterial thromboses that may
present as ischemic stroke, mesenteric
ischemia and acute limb ischemia; and the
phenomenon of free-floating thrombi
observed in COVID-19 infectionerelated
thrombotic events.133,146-149

Studies of coagulation factors in the gen-
eral population have consistently shown
more favorable profiles for female subjects,
and particularly for young women of premen-
opausal age; such profiles may confer lower
risks for thrombotic events compared with
men (Table). Future investigation into the as-
sociations of coagulation markers with respect
to COVID-19 severity and sex differences
would improve understanding of the disease
pathology and inform treatment options.
Mayo Clin Proc. n October 2020;9
CONCLUSION
The higher COVID-19 case fatality rate and
increased severity of disease in males
compared with females is likely due to a
combination of behavioral/lifestyle risk fac-
tors, prevalence of co-morbidities, aging,
and underlying biological sex differences.
Several comorbidities, which disproportion-
ally occur in men, likely contribute to worse
COVID-19 outcomes, and concerns have
been expressed whether ACE inhibitors or
angiotensin receptor blockers may exert
adverse effects in COVID-19. Experimental
and epidemiologic evidence is conflicting as
to whether the use of ACE inhibitors and
angiotensin receptor blockers upregulate
ACE2 expression and impacts susceptibility
to infection and/or disease severity. Random-
ized clinical trials in progress may inform
recommendations about the use of such ther-
apy in COVID-19 patients and whether this
will differ by sex.

Based on the available literature, we
conclude that biological sex differences
may affect the pathogenic mechanisms of
COVID-19, the risk for infection, and the
severity of the disease, its outcomes, and
its biomarkers. Indeed, experimental and
epidemiologic evidence suggests that most
of the biomarkers that have been tested in
the context of the risk of infection and the
severity of COVID-19 differ by sex at base-
line within healthy populations. However,
the role of biological sex and risk for infec-
tion and disease severity is complex and
available data are not uniformly consistent.
A notable example is that of the immune
response: although females generally have
an overall stronger immune response, males
are more likely to develop the cytokine
storm associated with poor COVID-19 out-
comes. Further investigation into immuno-
modulation by sex hormones, age, and X-
linked gene expression may help explain
the worse survival of men, and may identify
sex-specific risk factors for SARS-CoV-2
infection and the course, outcomes, and
prognosis for COVID-19.
5(10):2189-2203 n https://doi.org/10.1016/j.mayocp.2020.07.024
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